Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/11918
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | Mahi, Abdelkrim | - |
dc.contributor.author | Menouer, Ramzi | - |
dc.date.accessioned | 2021-09-15T11:21:38Z | - |
dc.date.available | 2021-09-15T11:21:38Z | - |
dc.date.issued | 2021 | - |
dc.identifier.uri | http://di.univ-blida.dz:8080/jspui/handle/123456789/11918 | - |
dc.description | ill., Bibliogr. | fr_FR |
dc.description.abstract | Authorship verification (AV) is one of various topics parts of authorship analysis field that deals with the problem of determine whether two texts were written by the same author or not. A combination of a similarity-based methods and relevant linguistic features are used to achieve high accuracy authorship verification. To address this problem, we proposed a new approach using the Autoencoder deep learning method. Challenges in the context of Authorship verification have greatly increased in recent years, as the challenge of PAN (series of scientific events) for three last years from 2020 to 2022. To experiment our approach, we used the data provided by PAN 2021 AV task. Keywords: Authorship verification, PAN, Autoencoder, deep learning, similarity. | fr_FR |
dc.language.iso | en | fr_FR |
dc.publisher | Université Blida 1 | fr_FR |
dc.subject | Authorship verification | fr_FR |
dc.subject | PAN | fr_FR |
dc.subject | Autoencoder | fr_FR |
dc.subject | deep learning | fr_FR |
dc.subject | similarity | fr_FR |
dc.title | Authorship Verification From Text | fr_FR |
dc.type | Thesis | fr_FR |
Collection(s) : | Mémoires de Master |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
Mahi Abdelkrim et Menouer ramzi.pdf | 2,96 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.