Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/11918
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorMahi, Abdelkrim-
dc.contributor.authorMenouer, Ramzi-
dc.date.accessioned2021-09-15T11:21:38Z-
dc.date.available2021-09-15T11:21:38Z-
dc.date.issued2021-
dc.identifier.urihttp://di.univ-blida.dz:8080/jspui/handle/123456789/11918-
dc.descriptionill., Bibliogr.fr_FR
dc.description.abstractAuthorship verification (AV) is one of various topics parts of authorship analysis field that deals with the problem of determine whether two texts were written by the same author or not. A combination of a similarity-based methods and relevant linguistic features are used to achieve high accuracy authorship verification. To address this problem, we proposed a new approach using the Autoencoder deep learning method. Challenges in the context of Authorship verification have greatly increased in recent years, as the challenge of PAN (series of scientific events) for three last years from 2020 to 2022. To experiment our approach, we used the data provided by PAN 2021 AV task. Keywords: Authorship verification, PAN, Autoencoder, deep learning, similarity.fr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 1fr_FR
dc.subjectAuthorship verificationfr_FR
dc.subjectPANfr_FR
dc.subjectAutoencoderfr_FR
dc.subjectdeep learningfr_FR
dc.subjectsimilarityfr_FR
dc.titleAuthorship Verification From Textfr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Mahi Abdelkrim et Menouer ramzi.pdf2,96 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.