Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/13156
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorMebarkia, Nihad
dc.contributor.authorKacel, Yasmine; Choutri, Kheireddine (promoteur); Lagha, Mohand (promoteur)
dc.date.accessioned2021-11-25T09:09:32Z
dc.date.available2021-11-25T09:09:32Z
dc.date.issued2021
dc.identifier.urihttp://di.univ-blida.dz:8080/jspui/handle/123456789/13156
dc.descriptionMémoire de Master option Avionique .-Numéro de Thèse 050/2021fr_FR
dc.description.abstractOver the past several years, human-drone interaction have got an important part from the scientific researchs. When interacting with a drone, humans take on many responsibilities. Their role is determined by the drone’s application and the amount of autonomy. The purpose of this work is to control the movement of the unmanned aerial vehicle (UAV) using a multilingual speech recognition system. For that, a deep neural network (DNN) is trained to recognize the user’s speech from many languages and then generate the desired control command. We conducted experiments involving participants giving voice commands in order to compare the effectivencess of each database. Hardware implementation of the designed system proof its high accuracy recognition and control simplicity.fr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 01fr_FR
dc.subjectSpeech recognition; DNN; UAV, ; Control; Human-Drone Interactionfr_FR
dc.titleMultilingual voice recognition using deep learning for human-drone interactionfr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
memoire finale25112021.pdf4,91 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.