Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/20093
Titre: | Un modèle d'apprentissage en profondeur pour détecter les faux profils |
Auteur(s): | Belkebir, Houria Boukherouba, Ahlem Boumahdi, Fatima ( Promotrice) Remmide, Mohamed Abdelkarim (Co-Promoteur) |
Mots-clés: | L'apprentissage en profondeur Réseaux de neurones Réseaux sociaux Détection de faux comptes (Sybils) |
Date de publication: | 2022 |
Editeur: | Université Blida 1 |
Résumé: | Les sites de réseaux sociaux sont des applications populaires pour publier des vidéos et des photos, en raison de leur grande popularité, malgré leur développement du fait qu'ils sont exposés à plusieurs dangers, parmi ces dangers figurent les faux comptes personnels. L'attaquant falsifie les comptes pour diffuser des informations erronées telles que des logiciels malveillants, des virus ou des URL malveillantes. Dans ce travail, nous formulons le problème de détection des comptes malveillants dans les communautés, une solution d'apprentissage en profondeur pour détecter les comptes malveillants, où nous avons implémenté cinq algorithmes, le premier étant Convolutional neural network (CNN), Temporal Convolutional Networks (TCN), le troisième l'algorithme était un mélange de (TCN) et (LSTM), et le quatrième algorithme était un mélange de (TCN + LSTM + GRU) , et le cinquième algorithme (TCN + LSTM + Bi GRU) , a été appliqué à deux ensemble de données, chaque groupe contenant deux parties. La précision la plus élevée a été atteinte dans le premier ensemble de données, en particulier dans la partie 2 CLASS, était d'environ 90,81%, et c'était dans le modèle (TCN + LSTM) Quant à la partie 4 CLASS, la précision la plus élevée a été trouvée dans le modèle ( TCN + LSTM + Bi GRU), atteignant 90,12 %. A Pour le deuxième ensemble de données, la précision la plus élevée a été trouvée dans le modèle (TCN + LSTM + GRU) était de 97,46 % Mots clés: L'apprentissage en profondeur, Réseaux de neurones, Réseaux sociaux, Détection de faux comptes (Sybils). |
Description: | ill., Bibliogr. Cote: ma-004-865 |
URI/URL: | https://di.univ-blida.dz/jspui/handle/123456789/20093 |
Collection(s) : | Mémoires de Master |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
Belkebir Houria et Boukherouba Ahlem.pdf | 2,65 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.