Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/20695
Titre: | Détection de Caries Dentaires par Deep Learning |
Auteur(s): | Issad, Nihad Si-Hadi, Sarah |
Mots-clés: | Classification, CNN, Caries Dentaires, VGG16, VGG19, Inseption-ResNet V2, Apprentissage par Transfert |
Date de publication: | 2022 |
Editeur: | blida1 |
Résumé: | Plusieurs méthodes et algorithmes ont été développés pour la reconnaissance et la classification de la carie dentaire chez les patients malades. Parmi toutes ces techniques, nous avons choisi pour notre projet de fin d’études, l'approche CNN en appliquant l'apprentissage par transfert sur une base de données. Pour cela, nous avons utilisé plusieurs modèles préentrainés (VGG16, VGG19 et Inseption-ResNet V2). Après avoir testé ces derniers, nous avons constaté que le VGG16 est le plus performant en classification de la carie dentaire avec une précision de 97,06 % en test. L'application réalisée permet de classifier la carie dentaire et donner le pourcentage du type de cette dernière. |
Description: | 4.621.1.1146. 107P |
URI/URL: | https://di.univ-blida.dz/jspui/handle/123456789/20695 |
Collection(s) : | Mémoires de Master |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
chentir-New pfe (2) (1).pdf | 4,04 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.