Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/25137
Titre: La Mécanique quantique pt -symétrique par la théorie des perturbations variationnelles
Auteur(s): Yahiaoui, Sid-Ahmed
Mots-clés: Mécanique quantique
Perturbations variationnelles
Dynamique quantique
Formalisme
Propagateur (Kernel)
Calcul analytique
Systèmes physiques
Techniques d’approximations
Théorie des perturbations
Oscillateurs harmoniques
Date de publication: avr-2005
Editeur: univ.blida 1
Résumé: Les résultats de la dynamique quantique permettent de donner une description cohérente et différente de la mécanique quantique, et d’introduire la notion plus générale du formalisme des intégrales du chemin. Cette formulation, introduite par Richard P. Feynman, est considérée aujourd’hui comme une méthode puissante de quantification. Ce formalisme est basé essentiellement sur la connaissance exacte d’un être mathématique communément appelé : propagateur (Kernel), ce dernier permet de propager la fonction d’onde d’un instant antérieur à un instant ultérieur. Le calcul analytique exact du propagateur pour différents systèmes physiques n’est pas tout à fait au point, malgré les progrès considérables dans ce domaine, notamment l’introduction du paramètre temps et la reparamètrisation du chemin, ce qui nécessite l’introduction de quelques techniques d’approximations, parmi lesquelles une procédure fondée à la fois sur le principe variationnel et le calcul perturbatif, connue sous le nom : Théorie des perturbations variationnelles convergente pour matrice densité. L’intérêt grandissant porté, ces dernières années, aux Hamiltoniens complexes PT symétriques prouve bien que l’on a affaire à un champ de recherche dynamique et prometteur. Ces Hamiltoniens, qui ne sont pas hermitiens mais invariants sous la symétrie PT, ont un spectre en énergie réel et positif. La réalité et la positivité du spectre sont dues apparemment à l’invariance du Hamiltonien à la symétrie PT. Motivé par les récents travaux de recherche sur ce sujet, ce mémoire à pour but, d’une part, de traiter une classe d’Hamiltoniens complexes cubiques multidimensionnels couplés aux oscillateurs harmoniques par la théorie des perturbations variationnelles pour matrice densité, d’autre part, de prouver la réalité et la positivité du spectre d’énergie. Les résultats sont comparés avec ceux déduits par la méthode des récurrences de Bender-Wu.
Description: bibliogr.
URI/URL: https://di.univ-blida.dz/jspui/handle/123456789/25137
Collection(s) :Thèse de Magister

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
32-530-209-1.pdfThèse de Magister1,45 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.