Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/25174
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorAMEUR, El Hachemi-
dc.contributor.authorHAOUI, Hamza-
dc.contributor.authorHireche, ( Promoteur)-
dc.date.accessioned2023-10-03T13:36:27Z-
dc.date.available2023-10-03T13:36:27Z-
dc.date.issued2023-06-24-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/25174-
dc.descriptionill., Bibliogr. Cote:ma-004-939fr_FR
dc.description.abstractThe goal of this master’s thesis is to design, develop, and implement a comprehensive system that can effectively classify images based on their context. To achieve this objective, we employed two multimodal learning approaches, which enable us to capture and analyze long-term dependencies and contextual information more effectively. To demonstrate the performance of the proposed methods, experiments were conducted on a custom dataset. The evaluation of the chosen method yielded a classification accuracy of 80% Key words: Artificial intelligence, image classification, deep learning, contextual image classification, multimodal learningfr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 1fr_FR
dc.subjectArtificial intelligencefr_FR
dc.subjectimage classificationfr_FR
dc.subjectdeep learningfr_FR
dc.subjectcontextual image classificationfr_FR
dc.subjectmultimodal learningfr_FR
dc.titleApplication for contextual images classificationfr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Ameur El Hachemi et Haoui Hamza.pdf17,07 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.