Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/25174
Titre: Application for contextual images classification
Auteur(s): AMEUR, El Hachemi
HAOUI, Hamza
Hireche, ( Promoteur)
Mots-clés: Artificial intelligence
image classification
deep learning
contextual image classification
multimodal learning
Date de publication: 24-jui-2023
Editeur: Université Blida 1
Résumé: The goal of this master’s thesis is to design, develop, and implement a comprehensive system that can effectively classify images based on their context. To achieve this objective, we employed two multimodal learning approaches, which enable us to capture and analyze long-term dependencies and contextual information more effectively. To demonstrate the performance of the proposed methods, experiments were conducted on a custom dataset. The evaluation of the chosen method yielded a classification accuracy of 80% Key words: Artificial intelligence, image classification, deep learning, contextual image classification, multimodal learning
Description: ill., Bibliogr. Cote:ma-004-939
URI/URL: https://di.univ-blida.dz/jspui/handle/123456789/25174
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Ameur El Hachemi et Haoui Hamza.pdf17,07 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.