Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/25250
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBoucif, Miyyada-
dc.contributor.authorRahim, Ikram-
dc.contributor.authorOuahrani, L. ( Promotrice)-
dc.date.accessioned2023-10-04T13:31:51Z-
dc.date.available2023-10-04T13:31:51Z-
dc.date.issued2023-07-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/25250-
dc.descriptionill., Bibliogr. Cote:ma-004-950fr_FR
dc.description.abstractIn recent years, researchers have focused on developing and training visual question generation models that based on deep neural networks. these models have a wide range of applications in various domains, However, there have been no specialized works conducted on visual question generation in the Arabic language. Our work aims to automate the process of generating Arabic educational questions from visual content. We propose a visual Arabic question generation multi-modal, which integrates two distinct models. The first model is a fine-tuned Arabic image captioning model, obtained by fine-tuning the Google Vision transformer and AraBert transformer using a new collected dataset. The second model is an Arabic natural question generation fine-tuned model. Our proposed multi-model has been evaluated using the Transparent Human benchmark protocol, and the results demonstrate its ability to generate relevant captions. 51% of the captions received a rating between 2 to 4 out of 5 on the scale, indicating their relevance. Additionally, the model produced relevant questions based on these captions, achieving an average rating of 3.33 out of 5 in term of relevance. Keywords: Visual question generation, Arabic image captioning, Transformers, Vision transformer, deep learning.fr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 1fr_FR
dc.subjectVisual question generationfr_FR
dc.subjectArabic image captioningfr_FR
dc.subjectTransformersfr_FR
dc.subjectVision transformerfr_FR
dc.subjectdeep learningfr_FR
dc.titleTowards Visual Question Generation Systemfr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Boucif Miyyada et Rahim Ikram.pdf13,16 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.