Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/25254
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBelhadj, Akram Djalal-
dc.contributor.authorHamid Sidi Ykrelf, Abdelfettah-
dc.contributor.authorChikhi, Nacim Fateh ( Promoteur)-
dc.date.accessioned2023-10-04T13:46:17Z-
dc.date.available2023-10-04T13:46:17Z-
dc.date.issued2023-06-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/25254-
dc.descriptionill., Bibliogr. Cote:ma-004-952fr_FR
dc.description.abstractRansomware is malicious software that encrypts victims' data and demands a ransom to decrypt them. This type of malware attacks are becoming more sophisticated, posing a significant threat to individuals and organizations. This research focuses on developing a powerful ransomware detection model that integrates behavioral analysis, deep learning, and bootstrapping techniques. The model uses behavioral analysis to identify ransomware samples, while deep learning techniques train multiple specialized models to detect zero-day ransomware attacks and minimize false positives. The proposed model outperforms machine learning algorithms in terms of accuracy, precision, and recall. This work should serve as the first step for further research and exploration of additional features, behavioral indicators, static analysis techniques, and hybrid approaches to enhance detection capabilities and combat ransomware threats, and finally to deployment in production. Keywords: Ransomware Detection, Deep Learning, Feedforward Neural Network, Machine Learning, Ensemble Learning.fr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 1fr_FR
dc.subjectRansomware Detectionfr_FR
dc.subjectDeep Learningfr_FR
dc.subjectFeedforward Neural Networkfr_FR
dc.subjectMachine Learningfr_FR
dc.subjectEnsemble Learningfr_FR
dc.titleRansomware detection using Deep Learningfr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Belhadj Akram Djalal et Hamid Sidi Ykrelf Abdelfettah.pdf2,19 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.