Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/25254
Titre: Ransomware detection using Deep Learning
Auteur(s): Belhadj, Akram Djalal
Hamid Sidi Ykrelf, Abdelfettah
Chikhi, Nacim Fateh ( Promoteur)
Mots-clés: Ransomware Detection
Deep Learning
Feedforward Neural Network
Machine Learning
Ensemble Learning
Date de publication: jui-2023
Editeur: Université Blida 1
Résumé: Ransomware is malicious software that encrypts victims' data and demands a ransom to decrypt them. This type of malware attacks are becoming more sophisticated, posing a significant threat to individuals and organizations. This research focuses on developing a powerful ransomware detection model that integrates behavioral analysis, deep learning, and bootstrapping techniques. The model uses behavioral analysis to identify ransomware samples, while deep learning techniques train multiple specialized models to detect zero-day ransomware attacks and minimize false positives. The proposed model outperforms machine learning algorithms in terms of accuracy, precision, and recall. This work should serve as the first step for further research and exploration of additional features, behavioral indicators, static analysis techniques, and hybrid approaches to enhance detection capabilities and combat ransomware threats, and finally to deployment in production. Keywords: Ransomware Detection, Deep Learning, Feedforward Neural Network, Machine Learning, Ensemble Learning.
Description: ill., Bibliogr. Cote:ma-004-952
URI/URL: https://di.univ-blida.dz/jspui/handle/123456789/25254
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Belhadj Akram Djalal et Hamid Sidi Ykrelf Abdelfettah.pdf2,19 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.