Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/25335
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBousmaha, Ilhem-
dc.date.accessioned2023-10-05T12:55:30Z-
dc.date.available2023-10-05T12:55:30Z-
dc.date.issued2023-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/25335-
dc.description4.621.1.1247 /p 92fr_FR
dc.description.abstractSmishing, a form of social engineering attack involving fraudulent SMS messages, has become a major cybersecurity issue in mobile communications. In this study, we propose a new smishing detection method based on federated learning, a decentralized learning technique that preserves privacy. Using deep learning algorithms including LSTM, BiLSTM, CNN and MLP, we build a robust smishing detection model in a federated learning framework. Experiments show that the federated learning method using CNN achieves an accuracy of 92.38 %, demonstrating the efficacy of federated learning in solving the challenges of smishing detection while preserving data confidentiality. The proposed method offers a solution to smishing attacks, and paves the way for future research into privacy-preserving mobile security.fr_FR
dc.language.isofrfr_FR
dc.publisherblida 1fr_FR
dc.subject: Federated learning, Smishing, Mobile security, social engineering, Cyber securityfr_FR
dc.titleUn modèle d’apprentissage en profondeur pour détecter L’hameçonnage des SMS (smishing)fr_FR
dc.typeOtherfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Bousmaha-Ilhem-PFE-Finale.pdf3 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.