Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/25335Affichage complet
| Élément Dublin Core | Valeur | Langue |
|---|---|---|
| dc.contributor.author | Bousmaha, Ilhem | - |
| dc.date.accessioned | 2023-10-05T12:55:30Z | - |
| dc.date.available | 2023-10-05T12:55:30Z | - |
| dc.date.issued | 2023 | - |
| dc.identifier.uri | https://di.univ-blida.dz/jspui/handle/123456789/25335 | - |
| dc.description | 4.621.1.1247 /p 92 | fr_FR |
| dc.description.abstract | Smishing, a form of social engineering attack involving fraudulent SMS messages, has become a major cybersecurity issue in mobile communications. In this study, we propose a new smishing detection method based on federated learning, a decentralized learning technique that preserves privacy. Using deep learning algorithms including LSTM, BiLSTM, CNN and MLP, we build a robust smishing detection model in a federated learning framework. Experiments show that the federated learning method using CNN achieves an accuracy of 92.38 %, demonstrating the efficacy of federated learning in solving the challenges of smishing detection while preserving data confidentiality. The proposed method offers a solution to smishing attacks, and paves the way for future research into privacy-preserving mobile security. | fr_FR |
| dc.language.iso | fr | fr_FR |
| dc.publisher | blida 1 | fr_FR |
| dc.subject | : Federated learning, Smishing, Mobile security, social engineering, Cyber security | fr_FR |
| dc.title | Un modèle d’apprentissage en profondeur pour détecter L’hameçonnage des SMS (smishing) | fr_FR |
| dc.type | Other | fr_FR |
| Collection(s) : | Mémoires de Master | |
Fichier(s) constituant ce document :
| Fichier | Description | Taille | Format | |
|---|---|---|---|---|
| Bousmaha-Ilhem-PFE-Finale.pdf | 3 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.