Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/25335
Titre: | Un modèle d’apprentissage en profondeur pour détecter L’hameçonnage des SMS (smishing) |
Auteur(s): | Bousmaha, Ilhem |
Mots-clés: | : Federated learning, Smishing, Mobile security, social engineering, Cyber security |
Date de publication: | 2023 |
Editeur: | blida 1 |
Résumé: | Smishing, a form of social engineering attack involving fraudulent SMS messages, has become a major cybersecurity issue in mobile communications. In this study, we propose a new smishing detection method based on federated learning, a decentralized learning technique that preserves privacy. Using deep learning algorithms including LSTM, BiLSTM, CNN and MLP, we build a robust smishing detection model in a federated learning framework. Experiments show that the federated learning method using CNN achieves an accuracy of 92.38 %, demonstrating the efficacy of federated learning in solving the challenges of smishing detection while preserving data confidentiality. The proposed method offers a solution to smishing attacks, and paves the way for future research into privacy-preserving mobile security. |
Description: | 4.621.1.1247 /p 92 |
URI/URL: | https://di.univ-blida.dz/jspui/handle/123456789/25335 |
Collection(s) : | Mémoires de Master |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
Bousmaha-Ilhem-PFE-Finale.pdf | 3 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.