Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/25385
Titre: Détection d'intrusions réseaux en utilisant le Machine Learning
Auteur(s): LIZLI, RAFIK
KECIOUR, ANES
Mots-clés: network intrusions, network intrusion detection, Machine Learning, Machine Learning models, security, XGboost
Date de publication: 2023
Editeur: blida 1
Résumé: We are currently witnessing a constant increase in threats related to network intrusions. In this study, we focus on network intrusion detection using Machine Learning. Our objective is to explore different detection techniques by leveraging Machine Learning models. The results we obtain are carefully evaluated and compared to determine the most effective models. We highlight the importance of Machine Learning in intrusion detection, as it enables early and accurate detection of network intrusions. Additionally, we identify opportunities for future research to enhance intrusion prevention and response techniques, ultimately ensuring enhanced network security. In conclusion, XGBoost is recommended for network intrusion detection due to its high accuracy, ability to minimize classification errors, and good performance in terms of recall.
Description: 4.621.1.1238 / p90
URI/URL: https://di.univ-blida.dz/jspui/handle/123456789/25385
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
PFE R&T 2023.pdf3,1 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.