Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/32424
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorKadi, Abdelhakim-
dc.contributor.authorKameche, A. (Promoteur)-
dc.date.accessioned2024-11-04T14:15:16Z-
dc.date.available2024-11-04T14:15:16Z-
dc.date.issued2024-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/32424-
dc.descriptionill., Bibliogr. Cote:ma-004-1019fr_FR
dc.description.abstractAudio retrieval based on language allows users to search for audio content using natural language queries. This technology, which has gained popularity in recent years, has numerous applications in fields such as entertainment, education, and healthcare. To achieve our goal, we conducted several tests and validated our results using a phonetic subtitle dataset, converting the sentences into vectors using sBert. We extracted log mel spectrograms from the corresponding audio files. Our analysis was further deepened by applying a convolutional neural network (CNN) architecture to extract features from the log mel spectrograms. We then calculated the similarity with subtitles using the cosine metric. This research underscores the potential for enhanced audio retrieval systems, paving the way for more intuitive and effective methods for accessing audio information. Keywords: Language-based audio retrieval, natural language queries, log mel spectrogram, sBertfr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 1fr_FR
dc.subjectLanguage-based audio retrievalfr_FR
dc.subjectnatural language queriesfr_FR
dc.subjectlog mel spectrogramfr_FR
dc.subjectsBertfr_FR
dc.titleAudio search engine based on joint embeddingfr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Kadi Abdelhakim.pdf947,67 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.