Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/39689
Titre: | Deep Learning pour la reconnaissance des symbols du langage des signes francais |
Auteur(s): | Boudjerda, Djahida Rehif, Fedia |
Mots-clés: | image search, classification, CNN: Convolutional Neural Networks, Deep Learning: deep learning |
Date de publication: | 2023 |
Editeur: | Blida1 |
Résumé: | Abstract: Hand gestures play a very important role in our daily life as one of the richest means of non-verbal communication. Thus, in the field of Human-Computer Interaction (HMI). In our thesis, we used deep learning and convolutional neural networks (CNNs) to classify a database of images into a set of classes (images of American Sign Language alphabets), we used Matlab, we are going to present through this memory we presented our application by giving some screenshots which explain the progress and the functioning of our work, as well as the results obtained. |
Description: | 4.621.1.1368 ; 74 p |
URI/URL: | https://di.univ-blida.dz/jspui/handle/123456789/39689 |
Collection(s) : | Mémoires de Master |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
mémoir pdf.pdf | 7,73 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.