Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/39933
Titre: | Closed-loop separated flow con on backward facing step |
Autre(s) titre(s): | Contrôle en boucle fermée d’un écoulement décollé sur une marche descendante |
Auteur(s): | kouah, salim |
Mots-clés: | Flow separation Backward facing step Instabilities |
Date de publication: | 2025 |
Editeur: | univ-Blida1 |
Résumé: | Closed-loop separated flow control on backward facing step This thesis proposes a novel approach to closed-loop flow control using artificial intelligence (AI), focusing on the prediction and manipulation of dynamic flow behaviors in fluid dynamics applications. The research begins with a numerical investigation of flow separation over a backward-facing step (BFS) using the Detached Eddy Simulation (DES) model, validated against experimental data to ensure fidelity in capturing critical flow features. We introduce a new class of neural networks designed to predict dynamic flow behavior over the (BFS) using wall pressure measurements. These networks achieve high accuracy, enabling real-time flow control applications. The study further explores the influence of frequency information and shear layer dynamics on effective flow control strategies. Leveraging these insights, AI-driven methods are applied to predict and manipulate shear layer behavior, achieving significant improvements in flow control performance. Correlation analyses demonstrate the predictability of future and past flow states within a defined time horizon, offering valuable insights for optimizing both open-loop and closed-loop control systems. These findings contribute to the development of adaptive, efficient flow control strategies with broad implications for aerospace, automotive, and energy systems. |
URI/URL: | https://di.univ-blida.dz/jspui/handle/123456789/39933 |
Collection(s) : | Thèse de Doctorat |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
32-530-908.pdf | These | 34,4 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.