Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/40812
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorMoliehi Christina Macheli-
dc.date.accessioned2025-10-28T11:28:03Z-
dc.date.available2025-10-28T11:28:03Z-
dc.date.issued2025-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/40812-
dc.description4.621.1.1379;93pfr_FR
dc.description.abstractThis research project aims to explore the use of deep learning for detecting epilepsy from EEG signals, a rising need since epilepsy is one of the most common neurological disorders. For this study, we propose a methodology that involves several stages such as, data collection, signal preprocessing, feature extraction, model design, training and, also evaluation using performance metrics. Convolutional neural network (CNN) was chosen due to its effectiveness in learning spatial and temporal patterns in EEG data. Each stage of the pipeline was carefully designed to ensure that the system could learn relevant features from the data while minimizing overfitting and ensuring generalizability. The results were promising and incorporated into a user interface as an aid to medical diagnosis.fr_FR
dc.language.isoenfr_FR
dc.publisherblida1fr_FR
dc.subjectEpilepsy detection, Electroencephalography, Biomarkers, Deep learning, Convolutional Neural Networkfr_FR
dc.titleDetection of epileptic seizures in EEG signals using Deep Learningfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Instrum_8 1379-9551.pdf3,95 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.