Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/40856
Titre: Détection automatique des panneaux de signalisation routière basée sur YOLOv11
Auteur(s): DJEZZAR Khalida
ESSID Ikram
Mots-clés: YOLOv11, traitement d’image, apprentissage profond, Roboflow, panneaux de signalisation.
Date de publication: 2025
Editeur: blida1
Résumé: Notre projet a pour objectif de concevoir un système intelligent basé sur l’apprentissage profond pour la détection et la reconnaissance des panneaux de signalisation routière. Le modèle YOLO (You Only Look Once) est utilisé comme apprentissage supervisé pour détecter des objets se trouvant sur une image numérique. Le YOLOv11, été choisi comme modèle d’apprentissage supervisé pour sa légèreté et sa capacité à fonctionner efficacement en temps réel, entrainé à partir de données annotées via la plateforme Roboflow.Le Roboflow est un outilpour l’annotations des images sur lesquelles figurent des régions d’intérêt à détecter (ROI, Region of intrest).Nous avons mis en œuvre diverses techniques utilisant différentes versions de Yolo11 au sein de l’interface graphique pour détecter des panneaux de signalisation sur des images, des vidéos et webcam. Il intègre notamment des modules d’OCR (Reconnaissance Optique de Caractères), une gestion de la résolution (DPI) pour tester la robustesse du système proposé, des images bruitées utilisé ainsi que des images prise dans des conditions réelles de circulation.
Description: 4.621.1.1400;94p
URI/URL: https://di.univ-blida.dz/jspui/handle/123456789/40856
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Mémoire_ESE13 (1) 1400-9572.pdf5,78 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.