Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/41042Affichage complet
| Élément Dublin Core | Valeur | Langue |
|---|---|---|
| dc.contributor.author | Abdelhak, Omar | - |
| dc.date.accessioned | 2025-11-26T14:42:10Z | - |
| dc.date.available | 2025-11-26T14:42:10Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | https://di.univ-blida.dz/jspui/handle/123456789/41042 | - |
| dc.description.abstract | Let G = (V;E) be a simple graph. A Roman dominating function (RDF for short) on G is a function f : V ..! f0; 1; 2g satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight w (f) of an RDF f is de.ned as w(f) = Pu2V f(u). The minimum weight of an RDF on a graph G is called the Roman domination number of G, denoted R(G). A double Roman dominating function (DRDF) of a graph G is a function f : V ! f0; 1; 2; 3g for which the following conditions are satis.ed. i) If f(v) = 0, then the vertex v must have at least two neighbors assigned 2 under f or one neighbor assigned 3 under f. ii) If f(v) = 1, then the vertex v must have at least one neighbor u with f(u) 2. The weight w (f) of an DRDF f is the value w(f) = Pu2V f(u). The minimum weight of an DRDF on a graph G is called the double Roman domination number of G, denoted dR(G). In this thesis, we will extend the study of double Roman domination by presenting new results on the Nordhaus-Gaddum type inequality and providing a characterization of all graphs G satisfying dR (G) = 2 R (G) .. 1. We will also explore the concept of criticality, and solve some problems from various papers in this area. | fr_FR |
| dc.language.iso | en | fr_FR |
| dc.publisher | univ.Blida 1 | fr_FR |
| dc.subject | A double Roman dominating function | fr_FR |
| dc.title | Study of some roman domination parameters | fr_FR |
| dc.type | Thesis | fr_FR |
| Collection(s) : | Thèses de Doctorat | |
Fichier(s) constituant ce document :
| Fichier | Description | Taille | Format | |
|---|---|---|---|---|
| 32-510-183.pdf | These | 821,02 kB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.