Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/41043Affichage complet
| Élément Dublin Core | Valeur | Langue |
|---|---|---|
| dc.contributor.author | Chegloufa, Naceur | - |
| dc.date.accessioned | 2025-11-26T14:47:44Z | - |
| dc.date.available | 2025-11-26T14:47:44Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | https://di.univ-blida.dz/jspui/handle/123456789/41043 | - |
| dc.description.abstract | The objective of this thesis is to investigate fractional-order boundary value problems in non-regular domains by examining the existence and uniqueness of solutions for various types of abstract differential equations involving fractional operators. The study begins with an analysis of three-dimensional fourth-order differential equations incorporating fractional powers of the negative Laplace operator under Cauchy-Dirichlet boundary conditions in cuspidal domains. The investigation techniques are based on transforming the main problem, through a natural change of variables, into a complete abstract fourth-order differential equation involving fractional powers of linear operators, which allows us to provide results on well-posedness. Furthermore, we explore periodic-type solutions for fractional neutral evolution equations involving Caputo and -Hilfer derivatives, utilizing classical fixed point theorems as a preliminary step toward further investigation of fractional-order boundary value problems in non-smooth domains. | fr_FR |
| dc.language.iso | en | fr_FR |
| dc.publisher | univ.Blida 1 | fr_FR |
| dc.subject | non-regular domains | fr_FR |
| dc.subject | existence and uniqueness | fr_FR |
| dc.subject | abstract differential equations | fr_FR |
| dc.title | A Study of certain fractional-order boundary value problems on non-regular domains | fr_FR |
| dc.type | Thesis | fr_FR |
| Collection(s) : | Thèses de Doctorat | |
Fichier(s) constituant ce document :
| Fichier | Description | Taille | Format | |
|---|---|---|---|---|
| 32-510-184.pdf | These | 1,43 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.