Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/41161
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorEl Robrini, Ferial-
dc.date.accessioned2025-12-14T11:40:32Z-
dc.date.available2025-12-14T11:40:32Z-
dc.date.issued2025-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/41161-
dc.description.abstractThe variability of solar energy presents a major challenge for the expansion of photovoltaic systems, as it affects grid stability and overall energy management. To address this issue, advanced forecasting techniques are required to accurately predict production fluctuations. This study focuses on short-term photovoltaic energy forecasting in Algeria’s High Plains, using real-world data from the Djelfa power plant. Deep learning models are developed to improve forecasting accuracy while capturing monthly variations. The findings contribute to optimizing photovoltaic energy integration and supporting decision-making for grid operators and energy policymakers.fr_FR
dc.language.isoenfr_FR
dc.publisheruniv.Blida 1fr_FR
dc.subjectSolar photovoltaic energyfr_FR
dc.subjectdata miningfr_FR
dc.subjectartificial intelligencefr_FR
dc.titleData Mining and Artificial Intelligence for the management and Diagnosis of Grid-Connected Photovoltaic Power Plants in Algeriafr_FR
dc.typeThesisfr_FR
Collection(s) :Thèses de Doctorat

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
32-530-919.pdfThese38,08 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.