Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/41194
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorEchikr, Abdelghafour-
dc.contributor.authorMadani, Amina. (Promotrice)-
dc.date.accessioned2025-12-17T12:18:34Z-
dc.date.available2025-12-17T12:18:34Z-
dc.date.issued2025-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/41194-
dc.descriptionill.,Bibliogr.cote:MA-004-1096fr_FR
dc.description.abstractThe spread of health misinformation on social networks has become a critical public health concern, undermining trust in medical advice, promoting harmful behaviors, and weakening responses to global crises like the COVID-19 pandemic. Unlike general misin- formation, health-related falsehoods often exploit scientific language, emotional appeal, and evolving medical knowledge, making them harder to detect and regulate. Social plat- forms, with their rapid content sharing and echo chambers, further amplify misleading narratives before fact-checkers can respond. Manual moderation and traditional detection systems struggle to keep pace with the volume and complexity of content, especially when misinformation is subtle, context- dependent, or shared with misleading intent. The dynamic and informal nature of so- cial media language presents additional challenges for rule-based or keyword-driven ap- proaches. To address these issues, this thesis explores a deep learning-based solution using a Mod- ernBERT architecture. By fine-tuning the model on labeled health misinformation data from social platforms, we demonstrate its ability to capture contextual and linguistic patterns that distinguish false claims from factual ones, providing a foundation for more scalable, automated detection tools. Keywords: health misinformation, social media, BERT, ModernBERT, deep learning, natural language processing, misinformation detection, public health, transformer models, contextual embeddings.fr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 1fr_FR
dc.subjecthealth misinformationfr_FR
dc.subjectsocial mediafr_FR
dc.subjectBERTfr_FR
dc.subjectModernBERTfr_FR
dc.subjectdeep learningfr_FR
dc.subjectnatural language processingfr_FR
dc.subjectmisinformation detectionfr_FR
dc.subjectpublic healthfr_FR
dc.subjectcontextual embeddingsfr_FR
dc.subjecttransformer modelsfr_FR
dc.titleHealth Misinformation Detection on Social Networksfr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
ECHIKR Abdelghafour.pdf2,34 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.