Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/41194Affichage complet
| Élément Dublin Core | Valeur | Langue |
|---|---|---|
| dc.contributor.author | Echikr, Abdelghafour | - |
| dc.contributor.author | Madani, Amina. (Promotrice) | - |
| dc.date.accessioned | 2025-12-17T12:18:34Z | - |
| dc.date.available | 2025-12-17T12:18:34Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | https://di.univ-blida.dz/jspui/handle/123456789/41194 | - |
| dc.description | ill.,Bibliogr.cote:MA-004-1096 | fr_FR |
| dc.description.abstract | The spread of health misinformation on social networks has become a critical public health concern, undermining trust in medical advice, promoting harmful behaviors, and weakening responses to global crises like the COVID-19 pandemic. Unlike general misin- formation, health-related falsehoods often exploit scientific language, emotional appeal, and evolving medical knowledge, making them harder to detect and regulate. Social plat- forms, with their rapid content sharing and echo chambers, further amplify misleading narratives before fact-checkers can respond. Manual moderation and traditional detection systems struggle to keep pace with the volume and complexity of content, especially when misinformation is subtle, context- dependent, or shared with misleading intent. The dynamic and informal nature of so- cial media language presents additional challenges for rule-based or keyword-driven ap- proaches. To address these issues, this thesis explores a deep learning-based solution using a Mod- ernBERT architecture. By fine-tuning the model on labeled health misinformation data from social platforms, we demonstrate its ability to capture contextual and linguistic patterns that distinguish false claims from factual ones, providing a foundation for more scalable, automated detection tools. Keywords: health misinformation, social media, BERT, ModernBERT, deep learning, natural language processing, misinformation detection, public health, transformer models, contextual embeddings. | fr_FR |
| dc.language.iso | en | fr_FR |
| dc.publisher | Université Blida 1 | fr_FR |
| dc.subject | health misinformation | fr_FR |
| dc.subject | social media | fr_FR |
| dc.subject | BERT | fr_FR |
| dc.subject | ModernBERT | fr_FR |
| dc.subject | deep learning | fr_FR |
| dc.subject | natural language processing | fr_FR |
| dc.subject | misinformation detection | fr_FR |
| dc.subject | public health | fr_FR |
| dc.subject | contextual embeddings | fr_FR |
| dc.subject | transformer models | fr_FR |
| dc.title | Health Misinformation Detection on Social Networks | fr_FR |
| dc.type | Thesis | fr_FR |
| Collection(s) : | Mémoires de Master | |
Fichier(s) constituant ce document :
| Fichier | Description | Taille | Format | |
|---|---|---|---|---|
| ECHIKR Abdelghafour.pdf | 2,34 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.