Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/41222
Titre: Application des Méta-heuristiques pour l'Optimisation du Processus de Machine Learning
Auteur(s): Salmi, Chahinaz
Maatseki, Selma
Aroussi, Sana. (Promotrice)
Mots-clés: Méta heuristique
Algorithme génétique
Deep learning
MLP
DNN
CNN
LSTM
Optimisation Bayésienne.
Grid Search
Random Search,
Date de publication: 3-jui-2025
Editeur: Université Blida 1
Résumé: Ce mémoire s'inscrit dans le cadre de l'optimisation des performances des modèles d'apprentissage automatique, en s'appuyant sur l'utilisation de l'algorithme Génétiques (GA). L'objectif principal est de proposer une approche d'optimisation conjointe des hyper paramètres et de sélection automatique de quatre modèles de l'apprentissage profond (DL): MLP, DNN, CNN et LSTM. Le processus d'optimisation mis en place repose sur une modélisation à la fois mono-objectif (axée sur le Recall) et multi-objectif (axée sur le F1-score), afin de guider la recherche vers des modèles à haute capacité de généralisation. L'algorithme génétique est chargé d'explorer l'espace des hyper-paramètres, tout en identifiant dynamiquement l'architecture de réseau la plus adaptée aux données traitées. Les expérimentations réalisées ont permis de comparer cette approche aux méthodes classiques d'optimisation comme la recherche exhaustive (Grid Search), la recherche aléatoire (Random Search) et l'optimisation Bayésienne mettant en évidence une amélioration notable en termes de précision, de temps d'exécution et de robustesse des modèles générés. Mots clés: Méta heuristiques, Algorithme génétique, Deep learning, MLP, DNN, CNN, LSTM, Grid Search, Random Search, Optimisation Bayésienne.
Description: ill.,Bibliogr.cote:MA-004-1093
URI/URL: https://di.univ-blida.dz/jspui/handle/123456789/41222
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
SALMI Chahinaz.pdf2,19 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.