Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/6145
Titre: | Les états limites d'une classe de potentiels P-T via la théorie des groupes |
Auteur(s): | Hattou, Souad |
Mots-clés: | Morse Pöschl-Teller |
Date de publication: | 2007 |
Editeur: | univ-blida1 |
Résumé: | Les états de diffusions et les états liés de certains potentiels sont caractérisés par des représentations algébriques. Ces dernières sont décrites par des représentations unitaires de certains groupes. Plusieurs potentiels d'intérêt pratiques, tels que les potentiels de Morse et de Pöschl-Teller y sont inclus. Le présent travail donne un traitement systématique et unifié relatif aux deux classes de potentiels de Morse et de Pöschl-Teller en liant leurs équations de Schrödinger respectives via le groupe de Lie compact , où nous trouvons les termes de leurs classes de potentiels par la supersymétrie de la mécanique quantique. Nous avons trouvé que les équations de Schrödinger sont équivalentes uniquement si leurs classes de potentiels ainsi que leurs fonctions d’onde, respectivement, sont liées par la transformée de Fourier. |
Description: | Bibliogr. ill . 103 p. |
URI/URL: | http://di.univ-blida.dz:8080/jspui/handle/123456789/6145 |
Collection(s) : | Thèse de Magister |
Fichier(s) constituant ce document :
Fichier | Taille | Format | |
---|---|---|---|
32-530-194-1.pdf | 582,28 kB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.