Université Blida 1

Predictive maintenance of aircraft engines: remaining useful life (RUL)

Afficher la notice abrégée

dc.contributor.author Bougherara, Khawla
dc.contributor.author Belaid, Nazim; Choutri, Khireddine (promoteur)
dc.date.accessioned 2024-07-10T09:00:31Z
dc.date.available 2024-07-10T09:00:31Z
dc.date.issued 2024
dc.identifier.uri https://di.univ-blida.dz/jspui/handle/123456789/29827
dc.description 84 p.; ill.+1 cd rom.-Mémoire de Master option Avionique.-Numéro de Thèse 005/2024 fr_FR
dc.description.abstract This thesis presents a comprehensive predictive maintenance system for aircraft en- gines, with a primary focus on predicting the Remaining Useful Life (RUL) using advanced Machine Learning (ML) techniques. Predictive maintenance is crucial in the aviation in- dustry as it enables the early detection of potential failures, thereby minimizing downtime, reducing maintenance costs, and ensuring the safety and reliability of aircraft operations. The research employs the PHM08 NASA dataset from the first conference on Prognos- tics and Health Management to train and evaluate various algorithms, including Gradi- ent Boosting (GBM), Support Vector Machines (SVM), Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and Convolu- tional Neural Networks combined with Long Short-Term Memory (CNN-LSTM) models. The study compares the performance of these methods using Root Mean Square Error (RMSE) as the evaluation metric. The findings indicate that the CNN-LSTM model is particularly effective for predicting the RUL of aircraft engines. The objectives of this system are to enhance operational efficiency within the aviation industry, reduce downtime, and improve maintenance strategies. ملخص تقدم هذه الأطروحة نظام صيانة تنبؤية شامل لمحركات الطائرات، مع التركيز الأساسي على التنبؤ بالعمر المتبقي القابل للاستخدام باستخدام تقنيات متقدمة في تعلم الآلة. تعتبر الصيانة التنبؤية أمرًا بالغ الأهمية في صناعة الطيران لأنها تتيح الكشف المبكر عن الأعطال المحتملة، مما يقلل من وقت التوقف عن العمل، ويخفض تكاليف الصيانة، ويضمن سلامة وموثوقية عمليات الطيران. يستخدم البحث مجموعة بيانات من ناسا من المؤتمر الأول لإدارة التنبؤات والصحة لتدريب وتقييم خوارزميات متنوعة، بما في ذلك التعزيز التدريجي ، آلات الدعم المتجهة ، الشبكات العصبية التلافيفية ، ذاكرة طويلة وقصيرة المدى ، وحدات التكرار المغلقة ، ونماذج الشبكات العصبية التلاقيفية المدمجة مع ذاكرة طويلة وقصيرة المدى. تقارن الدراسة أداء هذه الأساليب باستخدام خطأ الجذر التربيعي المتوسط كمقياس للتقييم. تشير النتائج إلى أن نموذج الشبكات العصبية التلاقيفية المدمجة مع ذاكرة طويلة وقصيرة المدى فعال بشكل خاص في التنبؤ بالعمر المتبقي القابل للاستخدام لمحركات الطائرات تهدف هذه المنظومة إلى تعزيز الكفاءة التشغيلية داخل صناعة الطيران، وتقليل وقت التوقف، وتحسين استراتيجيات الصيانة. fr_FR
dc.language.iso en fr_FR
dc.publisher Université Blida 01 fr_FR
dc.subject Predictive maintenance fr_FR
dc.subject Remaining useful life fr_FR
dc.subject Aircraft engine fr_FR
dc.subject Ma- chine learning fr_FR
dc.subject Deep learning fr_FR
dc.subject Neural networks fr_FR
dc.subject الصيانة التنبؤية fr_FR
dc.subject العمر المتبقي القابل للاستخدام fr_FR
dc.subject محرك الطائرة fr_FR
dc.subject تعلم الآلة fr_FR
dc.subject التعلم العميق fr_FR
dc.subject الشبكات العصبية fr_FR
dc.title Predictive maintenance of aircraft engines: remaining useful life (RUL) fr_FR
dc.type Thesis fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte