Université Blida 1

Statistical clustering methods, Application to financial data

Afficher la notice abrégée

dc.contributor.author Hachemane, Manel
dc.contributor.author Frihi, Redouane (Promoteur)
dc.date.accessioned 2024-11-05T13:12:19Z
dc.date.available 2024-11-05T13:12:19Z
dc.date.issued 2024-07-04
dc.identifier.uri https://di.univ-blida.dz/jspui/handle/123456789/32564
dc.description ill., Bibliogr. Cote:ma-510-184 fr_FR
dc.description.abstract The note focuses on statistical clustering methods in financial data analysis, leveraging algorithms such as k-means, hierarchical clustering, and Gaussian mixture models to cluster data points based .on statistical similarities These techniques play an essential role in many financial applications, including portfolio optimization, market segmentation, risk management, and anomaly detection. For example, in portfolio optimization, clustering helps diversify investments by grouping assets with similar risk and return profiles, thereby reducing overall portfolio volatility which aids in hedging strategies and mitigates market risk. Moreover, clustering methods help in detecting anomalies. in financial transactions, enhancing fraud detection and error prevention, improving decision-making processes, and optimizing financial strategies by systematically analyzing .complex data patterns and relationships fr_FR
dc.language.iso en fr_FR
dc.publisher Université Blida 1 fr_FR
dc.subject Supervised and unsupervised classification fr_FR
dc.subject clustering methods fr_FR
dc.subject k-means cluster fr_FR
dc.subject hierarchical cluster fr_FR
dc.subject Hierarchical miscture (GMM) fr_FR
dc.subject DBSCAN Cluster fr_FR
dc.subject Cryplocurrency Application fr_FR
dc.title Statistical clustering methods, Application to financial data fr_FR
dc.type Thesis fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte