Veuillez utiliser cette adresse pour citer ce document :
                
    
    https://di.univ-blida.dz/jspui/handle/123456789/25174| Titre: | Application for contextual images classification | 
| Auteur(s): | AMEUR, El Hachemi HAOUI, Hamza Hireche, ( Promoteur) | 
| Mots-clés: | Artificial intelligence image classification deep learning contextual image classification multimodal learning | 
| Date de publication: | 24-jui-2023 | 
| Editeur: | Université Blida 1 | 
| Résumé: | The goal of this master’s thesis is to design, develop, and implement a comprehensive system that can effectively classify images based on their context. To achieve this objective, we employed two multimodal learning approaches, which enable us to capture and analyze long-term dependencies and contextual information more effectively. To demonstrate the performance of the proposed methods, experiments were conducted on a custom dataset. The evaluation of the chosen method yielded a classification accuracy of 80% Key words: Artificial intelligence, image classification, deep learning, contextual image classification, multimodal learning | 
| Description: | ill., Bibliogr. Cote:ma-004-939 | 
| URI/URL: | https://di.univ-blida.dz/jspui/handle/123456789/25174 | 
| Collection(s) : | Mémoires de Master | 
Fichier(s) constituant ce document :
| Fichier | Description | Taille | Format | |
|---|---|---|---|---|
| Ameur El Hachemi et Haoui Hamza.pdf | 17,07 MB | Adobe PDF | Voir/Ouvrir | 
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

