Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/25335
Titre: Un modèle d’apprentissage en profondeur pour détecter L’hameçonnage des SMS (smishing)
Auteur(s): Bousmaha, Ilhem
Mots-clés: : Federated learning, Smishing, Mobile security, social engineering, Cyber security
Date de publication: 2023
Editeur: blida 1
Résumé: Smishing, a form of social engineering attack involving fraudulent SMS messages, has become a major cybersecurity issue in mobile communications. In this study, we propose a new smishing detection method based on federated learning, a decentralized learning technique that preserves privacy. Using deep learning algorithms including LSTM, BiLSTM, CNN and MLP, we build a robust smishing detection model in a federated learning framework. Experiments show that the federated learning method using CNN achieves an accuracy of 92.38 %, demonstrating the efficacy of federated learning in solving the challenges of smishing detection while preserving data confidentiality. The proposed method offers a solution to smishing attacks, and paves the way for future research into privacy-preserving mobile security.
Description: 4.621.1.1247 /p 92
URI/URL: https://di.univ-blida.dz/jspui/handle/123456789/25335
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Bousmaha-Ilhem-PFE-Finale.pdf3 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.