Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/25477
Titre: Implémentions De l`IA Dans Une Machine D`inspection Par Camera
Auteur(s): HORRI, WALID
HAMZA, ISHAK
Mots-clés: artificial intelligence (AI), PCBA, convolutional neural network (CNN), AUC
Date de publication: 2023
Editeur: blida 1
Résumé: This final year project investigates the use of artificial intelligence (AI) to enhance the inspection process of printed circuit boards (PCBA) at Bomare Company. Utilizing a convolutional neural network (CNN), we developed an AI model capable of accurately distinguishing defective from non-defective PCBA. Trained on a large dataset of images, the model demonstrated excellent performance in terms of accuracy, recall, and AUC score. We also discussed in detail the integration of the model into the production process, highlighting the importance of collaboration among various teams, operator training, and continuous performance monitoring of the model. The potential of AI to improve efficiency, quality, and reduce production costs was underscored, making this technology a viable solution for PCBA inspection in the manufacturing industry.
Description: 4.629.1.170/p97
URI/URL: https://di.univ-blida.dz/jspui/handle/123456789/25477
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
mémoire finale (1).pdf3,88 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.