Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/26043
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBelabbes Nabi, Mina-
dc.contributor.authorSahi, Serine-
dc.contributor.authorBoumahdi, Fatima ( Promotrice)-
dc.contributor.authorRemmide, Abdelkrim ( Encadreur)-
dc.date.accessioned2023-10-30T14:06:30Z-
dc.date.available2023-10-30T14:06:30Z-
dc.date.issued2023-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/26043-
dc.descriptionill., Bibliogr. Cote:ma-004-981fr_FR
dc.description.abstractAs social media platforms continue to grow in popularity and influence, the need to address problems related to content integrity and user accountability becomes more critical. Authorship attribution serves as a powerful tool in tackling such issues by accurately determining the real author of online posts. In this dissertation we propose an approach that utilizes deep learning models including Temporal Convolutional Networks (TCN) and Long Short-term Memory Networks (LSTM) combined with Convolutional neural networks (CNN) , along with machine learning models such as Autoencoder and Adaboost to effectively predict the authors of unknown online posts. To evaluate the effectiveness of our approach, we conducted experiments on various scenarios using a Twitter dataset, where we achieved an accuracy rate of 52.77% in authorship attribution. Keywords: NLP, Deep Learning, Authorship Attribution.fr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 1fr_FR
dc.subjectNLPfr_FR
dc.subjectDeep Learningfr_FR
dc.subjectAuthorship Attributionfr_FR
dc.titleAuthorship Attribution On Social Networksfr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Belabbes Nabi Mina et Sahi Serine.pdf1,61 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.