Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/26043
Titre: | Authorship Attribution On Social Networks |
Auteur(s): | Belabbes Nabi, Mina Sahi, Serine Boumahdi, Fatima ( Promotrice) Remmide, Abdelkrim ( Encadreur) |
Mots-clés: | NLP Deep Learning Authorship Attribution |
Date de publication: | 2023 |
Editeur: | Université Blida 1 |
Résumé: | As social media platforms continue to grow in popularity and influence, the need to address problems related to content integrity and user accountability becomes more critical. Authorship attribution serves as a powerful tool in tackling such issues by accurately determining the real author of online posts. In this dissertation we propose an approach that utilizes deep learning models including Temporal Convolutional Networks (TCN) and Long Short-term Memory Networks (LSTM) combined with Convolutional neural networks (CNN) , along with machine learning models such as Autoencoder and Adaboost to effectively predict the authors of unknown online posts. To evaluate the effectiveness of our approach, we conducted experiments on various scenarios using a Twitter dataset, where we achieved an accuracy rate of 52.77% in authorship attribution. Keywords: NLP, Deep Learning, Authorship Attribution. |
Description: | ill., Bibliogr. Cote:ma-004-981 |
URI/URL: | https://di.univ-blida.dz/jspui/handle/123456789/26043 |
Collection(s) : | Mémoires de Master |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
Belabbes Nabi Mina et Sahi Serine.pdf | 1,61 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.