Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/26105
Titre: Adversarial attacks detection based on an ontology of cyber threat
Auteur(s): Yahiaoui, Abdel Madjid
Ykrelef, Imad Eddine
Chachoua, Soraya (promotrice)
Mots-clés: Cyber security
cyber attacks
cyber defense
machine learning
adversary attacks
cyber threat ontology
Date de publication: jui-2023
Editeur: Université Blida 1
Résumé: Machine learning has been used in the field of cybersecurity to predict trends in cyberattacks. However, adversaries can inject malicious data into the dataset during training and testing to cause disruption and predict false narratives. It has become difficult to analyze and predict correlations of cyberattacks due to their fuzzy nature and lack of understanding of the nature of threats. We use our model to create a cyber threat ontology and use its rules to detect adversarial machine learning attacks. Keywords: Cyber security, cyber attacks, cyber defense, machine learning, adversary attacks, cyber threat ontology.
Description: ill., Bibliogr. Cote:ma-004-986
URI/URL: https://di.univ-blida.dz/jspui/handle/123456789/26105
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Yahiaoui Abdel Madjid et Ykrelef Imad Eddine.pdf1,82 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.