Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/26107
Titre: Behavioral analysis of Active Directory logs
Auteur(s): Aissani, Youcef
Neffah, Mohamed (Promoteur)
Mots-clés: anomaly detection
behavioral analysis,
clustering
preprocessing
machine learning
Date de publication: 2023
Editeur: Université Blida 1
Résumé: This thesis focuses on the behavioral analysis of log data for anomaly detection and clustering in the field of cybersecurity. The objective is to obtain insights into patterns, anomalies, and potential threats present in sonatrach’s logs. Various algorithms, including K-means, DBSCAN, GMM, and Isolation Forest, were evaluated and compared in terms of their performance in detecting anomalies and clustering the data. The results showed that while K-means performed poorly, DBSCAN, GMM, and Isolation Forest exhibited different levels of sensitivity and performance. The findings provide valuable insights for improving anomaly detection and threat analysis in cybersecurity. Keywords : anomaly detection, behavioral analysis, clustering, preprocessing, machine learning.
Description: ill., Bibliogr. Cote:ma-004-988
URI/URL: https://di.univ-blida.dz/jspui/handle/123456789/26107
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Aissani Youcef.pdf1,85 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.