Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/31594
Titre: eXplainable Artificial Intelligence for Intrusion Detection System based on ML
Auteur(s): Atsamnia, Youcef
Boucheloukh, Naaman
Boustia, Narimane (Promotrice)
SI Ahmed, Ayoub (Co- Promoteur)
Mots-clés: Explainable Artificial Intelligence (XAI)
Intrusion Detection System (IDS)
Machine
Date de publication: 2-jui-2024
Editeur: Université Blida 1
Résumé: The advancement of technology has reshaped various domains, particularly cybersecurity, where increasingly sophisticated cyberattacks pose significant threats. Explainable Artificial Intelligence (XAI) addresses the crucial need for transparency in AI systems. This thesis investigates XAI’s application to Intrusion Detection Systems (IDS) using Machine Learning (ML) and Deep Learning (DL) on Network-based (NIDS) and Host-based (HIDS) datasets. Specifically, the study utilizes the UNSWNB15 and CIC-IDS2018 datasets to evaluate the performance of Artificial Neural Networks (ANN) and XGBoost algorithms. Both algorithms have demonstrated significant effectiveness, achieving high accuracy and robust detection capabilities in identifying various types of cyberattacks. The thesis further explores the use of local agnostic LIME (Local Interpretable Model-agnostic Explanations) and global agnostic SHAP (SHapley Additive exPlanations) to enhance the interpretability of AI models. These XAI methods provide detailed insights into model decisions, making the AI-driven processes more transparent and trustworthy. Empirical evidence shows that LIME and SHAP not only improve the understanding of model behavior but also highlight the strengths and weaknesses of ANN and XGBoost in different scenarios. The study offers valuable insights for cybersecurity professionals and policymakers, demonstrating that the integration of AI, ML, DL, IDS, and XAI can significantly improve cybersecurity by making AI-driven decisions more transparent and trustworthy. These findings underscore the potential of combining advanced algorithms with interpretability techniques to develop more reliable and effective intrusion detection systems. Keywords: Explainable Artificial Intelligence (XAI), Intrusion Detection System (IDS), Machine
Description: ill., Bibliogr. Cote:ma-004-1016
URI/URL: https://di.univ-blida.dz/jspui/handle/123456789/31594
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Atsamnia Youcef et Boucheloukh Naaman.pdf2,56 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.