Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/32417
Titre: Time series prediction with a combined GARCH (Generalized Autoregressive Conditional Heteroskedasticity) and ANN (Artificial Neural Network) Model
Auteur(s): Merouche, Abdelkader
Landjas, Fatiha
Frihi, Redouane (Promoteur)
Mots-clés: GARCH
Artificial Neural Networks (ANN)
Model Hybridization
Financial Volatility Forecasting
Predictive Accuracy
GARCH(1, 1) Model
ANN Linear
ANN Tanh
Hybrid Models
Advanced Financial Models
Date de publication: 4-jui-2024
Editeur: Université Blida 1
Résumé: GARCH models, artificial neural networks (ANN), and their hybridization.Then we applied it to real financial data to evaluate its performance. The study aims to analyze the performance of the GARCH(1, 1) model and assess its predictive accuracy compared to other models. Finally, we propose a hybrid model that combines multiple components of the previous models to further enhance predictive performance. This study contributes to a deeper understanding of how to improve the accuracy of financial volatility forecasts by using advanced and hybrid models. Keywords: GARCH; Artificial Neural Networks (ANN); Model Hybridization; Financial Volatility Forecasting; Predictive Accuracy; GARCH(1, 1) Model; ANN Linear; ANN Tanh; Hybrid Models; Advanced Financial Models.
Description: ill., Bibliogr. Cote:ma-510-185
URI/URL: https://di.univ-blida.dz/jspui/handle/123456789/32417
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Merouche Abdelkader et Landjas Fatiha.pdf3,86 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.