Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/40814Affichage complet
| Élément Dublin Core | Valeur | Langue |
|---|---|---|
| dc.contributor.author | BENMALLEM Feriel | - |
| dc.date.accessioned | 2025-10-28T11:36:00Z | - |
| dc.date.available | 2025-10-28T11:36:00Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | https://di.univ-blida.dz/jspui/handle/123456789/40814 | - |
| dc.description | 4.621.1.1381;145p | fr_FR |
| dc.description.abstract | This thesis presents an embedded system for intelligent apricot ripeness detection using YOLOv8 on Raspberry Pi 5, aiming to modernize fruit quality assessment in Algerian agriculture. By creating and preprocessing a custom dataset, training and evaluating several YOLOv8 models, and optimizing for real-time edge deployment, the system enables accurate, fast, and objective classification of ripe and unripe apricots. The solution addresses challenges of labor scarcity and post-harvest losses, offering farmers a practical tool for better harvest timing and sustainable orchard management. This work demonstrates the potential of deep learning and embedded AI to bring tangible benefits to precision agriculture. | fr_FR |
| dc.language.iso | en | fr_FR |
| dc.publisher | blida1 | fr_FR |
| dc.subject | Detecting apricot ripeness, YOLOv8, Raspberry Pi 5, Embedded AI, Precision Agriculture | fr_FR |
| dc.title | Intelligent Detection of Apricot Ripeness using YOLOv8: Embedded Application on Raspberry Pi 5 for Precision Agriculture | fr_FR |
| Collection(s) : | Mémoires de Master | |
Fichier(s) constituant ce document :
| Fichier | Description | Taille | Format | |
|---|---|---|---|---|
| Master_Thesis_ESE6 1381-9553.pdf | 6,84 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.