Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/40814
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBENMALLEM Feriel-
dc.date.accessioned2025-10-28T11:36:00Z-
dc.date.available2025-10-28T11:36:00Z-
dc.date.issued2025-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/40814-
dc.description4.621.1.1381;145pfr_FR
dc.description.abstractThis thesis presents an embedded system for intelligent apricot ripeness detection using YOLOv8 on Raspberry Pi 5, aiming to modernize fruit quality assessment in Algerian agriculture. By creating and preprocessing a custom dataset, training and evaluating several YOLOv8 models, and optimizing for real-time edge deployment, the system enables accurate, fast, and objective classification of ripe and unripe apricots. The solution addresses challenges of labor scarcity and post-harvest losses, offering farmers a practical tool for better harvest timing and sustainable orchard management. This work demonstrates the potential of deep learning and embedded AI to bring tangible benefits to precision agriculture.fr_FR
dc.language.isoenfr_FR
dc.publisherblida1fr_FR
dc.subjectDetecting apricot ripeness, YOLOv8, Raspberry Pi 5, Embedded AI, Precision Agriculturefr_FR
dc.titleIntelligent Detection of Apricot Ripeness using YOLOv8: Embedded Application on Raspberry Pi 5 for Precision Agriculturefr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Master_Thesis_ESE6 1381-9553.pdf6,84 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.