Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/40814
Titre: Intelligent Detection of Apricot Ripeness using YOLOv8: Embedded Application on Raspberry Pi 5 for Precision Agriculture
Auteur(s): BENMALLEM Feriel
Mots-clés: Detecting apricot ripeness, YOLOv8, Raspberry Pi 5, Embedded AI, Precision Agriculture
Date de publication: 2025
Editeur: blida1
Résumé: This thesis presents an embedded system for intelligent apricot ripeness detection using YOLOv8 on Raspberry Pi 5, aiming to modernize fruit quality assessment in Algerian agriculture. By creating and preprocessing a custom dataset, training and evaluating several YOLOv8 models, and optimizing for real-time edge deployment, the system enables accurate, fast, and objective classification of ripe and unripe apricots. The solution addresses challenges of labor scarcity and post-harvest losses, offering farmers a practical tool for better harvest timing and sustainable orchard management. This work demonstrates the potential of deep learning and embedded AI to bring tangible benefits to precision agriculture.
Description: 4.621.1.1381;145p
URI/URL: https://di.univ-blida.dz/jspui/handle/123456789/40814
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Master_Thesis_ESE6 1381-9553.pdf6,84 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.