Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/40814| Titre: | Intelligent Detection of Apricot Ripeness using YOLOv8: Embedded Application on Raspberry Pi 5 for Precision Agriculture |
| Auteur(s): | BENMALLEM Feriel |
| Mots-clés: | Detecting apricot ripeness, YOLOv8, Raspberry Pi 5, Embedded AI, Precision Agriculture |
| Date de publication: | 2025 |
| Editeur: | blida1 |
| Résumé: | This thesis presents an embedded system for intelligent apricot ripeness detection using YOLOv8 on Raspberry Pi 5, aiming to modernize fruit quality assessment in Algerian agriculture. By creating and preprocessing a custom dataset, training and evaluating several YOLOv8 models, and optimizing for real-time edge deployment, the system enables accurate, fast, and objective classification of ripe and unripe apricots. The solution addresses challenges of labor scarcity and post-harvest losses, offering farmers a practical tool for better harvest timing and sustainable orchard management. This work demonstrates the potential of deep learning and embedded AI to bring tangible benefits to precision agriculture. |
| Description: | 4.621.1.1381;145p |
| URI/URL: | https://di.univ-blida.dz/jspui/handle/123456789/40814 |
| Collection(s) : | Mémoires de Master |
Fichier(s) constituant ce document :
| Fichier | Description | Taille | Format | |
|---|---|---|---|---|
| Master_Thesis_ESE6 1381-9553.pdf | 6,84 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.