Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/40815
Titre: Design and Implementation of a custom PCBBased Edge AI System Using STM32 for Real-Time State Detection and Condition Monitoring
Auteur(s): Laid Abderrahmane
Ouffa Wissal
Mots-clés: Edge-computing, STM32, NanoEdge, DMA, PCB
Date de publication: 2025
Editeur: blida1
Résumé: This thesis presents an edge-computing system for real-time industrial machine monitoring, combining an STM32F103RB microcontroller with NanoEdge AI Studio to Monitor Machine state on-device without cloud dependency. Vibration data from an MPU6050 sensor is captured via DMA, analyzed by embedded AI, and displayed locally on an OLED while being relayed to a web dashboard (via CAN bus and ESP32). A custom 6-layer PCB and modular firmware architecture ensure low-latency processing and scalability. The solution demonstrates how lightweight embedded AI can enable cost-effective predictive maintenance.
Description: 4.621.1.1382;157p
URI/URL: https://di.univ-blida.dz/jspui/handle/123456789/40815
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Master_Thesis_ESE7 1382-9554.pdf8,48 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.