Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/40815| Titre: | Design and Implementation of a custom PCBBased Edge AI System Using STM32 for Real-Time State Detection and Condition Monitoring |
| Auteur(s): | Laid Abderrahmane Ouffa Wissal |
| Mots-clés: | Edge-computing, STM32, NanoEdge, DMA, PCB |
| Date de publication: | 2025 |
| Editeur: | blida1 |
| Résumé: | This thesis presents an edge-computing system for real-time industrial machine monitoring, combining an STM32F103RB microcontroller with NanoEdge AI Studio to Monitor Machine state on-device without cloud dependency. Vibration data from an MPU6050 sensor is captured via DMA, analyzed by embedded AI, and displayed locally on an OLED while being relayed to a web dashboard (via CAN bus and ESP32). A custom 6-layer PCB and modular firmware architecture ensure low-latency processing and scalability. The solution demonstrates how lightweight embedded AI can enable cost-effective predictive maintenance. |
| Description: | 4.621.1.1382;157p |
| URI/URL: | https://di.univ-blida.dz/jspui/handle/123456789/40815 |
| Collection(s) : | Mémoires de Master |
Fichier(s) constituant ce document :
| Fichier | Description | Taille | Format | |
|---|---|---|---|---|
| Master_Thesis_ESE7 1382-9554.pdf | 8,48 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.