Résumé:
De nos jours, la gestion des déchets urbains représente un des problèmes majeurs pour
municipalités algériennes. La multiplication des décharges sauvages le long des rues, et
l’entassement de grandes masses d’ordures ménagères à l’air libre contribuent à détériorer notre
milieu. La mise en œuvre d’un système intelligent pour la gestion des déchets permet de faciliter,
aux services publics et aux entreprises concernées, le nettoyage, la collecte et l’élimination des
déchets.
Ainsi devant la vivacité du problème et l’importance de son enjeu social et environnemental,
nous avons adopté une méthodologie de recherche qui consiste à concevoir et implémenter deux
grands systèmes de classification automatique d’images. Le but de ces systèmes est de classer
images de poubelles en fonction de leurs niveaux de remplissage (vide, à moitié remplie,. . . ).
Les systèmes utilisent un algorithme de classification supervisé pour analyser les caractéristiques
visuelles extraites à partir des images de poubelles et identifier leurs taux de remplissage.
Mots clés :
Classification d’images, Apprentissage automatique, gestion des déchets solides, extraction de
caractéristiques. Today, solid waste management is one of the major problems for Algerian municipalities. The
accumulation of large masses of garbage in the open air contribute to damage our environment.
The implementation of an intelligent system for waste management facilitates the cleaning,
collection and disposal of waste by the public services and the companies concerned. So in front
this problem and the importance of its social and environmental stake, we have adopted a
research methodology that consists of designing and implementing two major automatic image
classification systems. The purpose of these systems is to classify garbage bin images according
their fill levels (Low, Full, Flow, Medium, OverFlow). The systems use a supervised classification
algorithm to analyze the visual characteristics extracted from the bin images and to identify
their fill rates.
eywords :
Image classification, Machine learning, Solid waste management, features extraction. يمثل تسيير النفايات الحضرية مشكل أساسي للجماعات المحلية الجزائرية، تفاقم النفايات العشوائية على مستوى الطرقات و تكدس كميات كبيرة من النفايات في الهواء الطلق تساهم في تلوث المحيط. وضع نظام ذكي لتسيير النفايات يسهل لمصالح الجماعات المحلية و المؤسسات المختصة تنظيم و تجميع و التخلص من هذه النفايات. و أمام هذا الوضع و أهميته من الناحية الإجتماعية و تأثيره على المحيط فقد اعتمدنا منهجية بحثية تتمثل في تصميم و تنفيذ نظامين رئيسيين لتصنيف الصور التلقائي. الغرض من هذه الأنظمة هو تصنيف صور سلة النفيات وفقا لمستويات التعبئة ( فارغة، نصف مملوءة، ...). تستخدم الأنظمة خوارزمية تصنيف خاضعة للإشراف لتحليل الخصائص المرئية المستخرجة من صور الصندوق و تحديد معدلات الملأ. الكلمات المفتاحية: تصنيف الصور، التعلم الآلي، استخلاص المميزات، تسيير النفايات الحضرية