Université Blida 1

Reconnaissance de billets d’argent algérien par l’apprentissage profond

Afficher la notice abrégée

dc.contributor.author ANABI, Nadjet
dc.contributor.author DJELLOUT, Manel
dc.date.accessioned 2023-09-20T13:12:39Z
dc.date.available 2023-09-20T13:12:39Z
dc.date.issued 2023
dc.identifier.uri https://di.univ-blida.dz/jspui/handle/123456789/24943
dc.description 4.621.1.1215 p:78 fr_FR
dc.description.abstract This project consists of the application of artificial intelligence for the detection and recognition of Algerian currency notes. To do this, deep learning based on YOLOV5 is used. A database of Algerian currencies has been created to learn or train the YOLOV5 model. After the training stage, a test phase was carried out, the results obtained are satisfactory and the model has reached the precision of; 88.19%, 92.86%, 96.58% and 96.55% for the notes of 1000 (side 1), 1000 (side 2), 2000 (side 1) and 2000 (side 2) respectively. An additional step based on image processing is introduced to determine the dimensions of the banknote, in particular, the width and the length and therefore the ratio (width/length). This ratio is used to accept or reject the banknote. fr_FR
dc.language.iso fr fr_FR
dc.publisher blida 1 fr_FR
dc.subject Artificial intelligence, Deep Learning, YOLOV5, banknotes, image processing fr_FR
dc.title Reconnaissance de billets d’argent algérien par l’apprentissage profond fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte