Université Blida 1

Application for contextual images classification

Afficher la notice abrégée

dc.contributor.author AMEUR, El Hachemi
dc.contributor.author HAOUI, Hamza
dc.contributor.author Hireche, ( Promoteur)
dc.date.accessioned 2023-10-03T13:36:27Z
dc.date.available 2023-10-03T13:36:27Z
dc.date.issued 2023-06-24
dc.identifier.uri https://di.univ-blida.dz/jspui/handle/123456789/25174
dc.description ill., Bibliogr. Cote:ma-004-939 fr_FR
dc.description.abstract The goal of this master’s thesis is to design, develop, and implement a comprehensive system that can effectively classify images based on their context. To achieve this objective, we employed two multimodal learning approaches, which enable us to capture and analyze long-term dependencies and contextual information more effectively. To demonstrate the performance of the proposed methods, experiments were conducted on a custom dataset. The evaluation of the chosen method yielded a classification accuracy of 80% Key words: Artificial intelligence, image classification, deep learning, contextual image classification, multimodal learning fr_FR
dc.language.iso en fr_FR
dc.publisher Université Blida 1 fr_FR
dc.subject Artificial intelligence fr_FR
dc.subject image classification fr_FR
dc.subject deep learning fr_FR
dc.subject contextual image classification fr_FR
dc.subject multimodal learning fr_FR
dc.title Application for contextual images classification fr_FR
dc.type Thesis fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte