Université Blida 1

Détection d’activité vocale basée sur l’apprentissage profond

Afficher la notice abrégée

dc.contributor.author KRAMOU, Rime
dc.contributor.author DJADI, Aya
dc.date.accessioned 2023-10-05T08:51:27Z
dc.date.available 2023-10-05T08:51:27Z
dc.date.issued 2023
dc.identifier.uri https://di.univ-blida.dz/jspui/handle/123456789/25278
dc.description 4.621.1.1261/p65 fr_FR
dc.description.abstract Voice activity detection (VAD) is considered one of the most important techniques for many speech applications. It is an important method in speech processing, as it detects the presence or absence of speech. Previously VAD performance was based on methods that depended on signal processing signal processing, but did not perform satisfactorily in high-noise environments, so deep learning became an alternative. A , we adopted in the experimental study three structures for deep learning deep learning, namely Convolutional Neural Networks (CNN) and a DenseNet network, and we also used the three databases for speech and noise, namely LibriSpeech, TidiGets and Chimie5 in succession. We measured accuracy in low-noise environments with various sensitivities and achieved 100% accuracy. fr_FR
dc.language.iso fr fr_FR
dc.publisher blida 1 fr_FR
dc.subject Convolutional Neural Networks, deep learning, database. fr_FR
dc.title Détection d’activité vocale basée sur l’apprentissage profond fr_FR
dc.type Other fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte