Afficher la notice abrégée
dc.contributor.author |
BINTOU SAIDOU, SOULEYMANE |
|
dc.date.accessioned |
2023-10-05T09:11:58Z |
|
dc.date.available |
2023-10-05T09:11:58Z |
|
dc.date.issued |
2023 |
|
dc.identifier.uri |
https://di.univ-blida.dz/jspui/handle/123456789/25289 |
|
dc.description |
4.621.1.1236 /p53 |
fr_FR |
dc.description.abstract |
This thesis presents the development of an innovative access control system that
verifies kinship based on facial characteristics from images. The main objective is to
design a robust and accurate method to determine the relationship between
individuals. This system has applications in residential security, access control to
restricted areas, and identification within a family environment. The thesis utilizes
convolutional neural networks (CNN) to classify similarities and differences among
family members. The proposed method achieved an accuracy of 91.75% on the
KinFaceW-II database. |
fr_FR |
dc.language.iso |
fr |
fr_FR |
dc.publisher |
blida 1 |
fr_FR |
dc.subject |
Parentage verification, CNN, access control, facial images. |
fr_FR |
dc.title |
Contrôle d’Accès par Vérification Parentale à base d’Images |
fr_FR |
dc.type |
Other |
fr_FR |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée