Université Blida 1

Implémentation sur Raspberry pi de modèles de détection de la somnolence par deep learning

Afficher la notice abrégée

dc.contributor.author Benaissa, Zineb
dc.contributor.author Lardjane, Rania
dc.date.accessioned 2023-10-05T10:39:10Z
dc.date.available 2023-10-05T10:39:10Z
dc.date.issued 2023
dc.identifier.uri https://di.univ-blida.dz/jspui/handle/123456789/25323
dc.description 4.621.1.1222/p86 fr_FR
dc.description.abstract Our project aims to implement a drowsiness detection system based on deep learning on Raspberry Pi(Tensorflow). This combination offers a portable and energy-efficient solution for accurate and real-time detection. The study examines the hardware and software aspects specific to Raspberry Pi, as well as the system's performance compared to another drowsiness detection method (Dlib). The goal is to enhance safety and vigilance in domains such as automotive driving and surveillance. fr_FR
dc.language.iso fr fr_FR
dc.publisher blida 1 fr_FR
dc.subject drowsiness, detection, tensorflow, raspberry pi, deep learning,dlib, driving. fr_FR
dc.title Implémentation sur Raspberry pi de modèles de détection de la somnolence par deep learning fr_FR
dc.type Other fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte