Afficher la notice abrégée
dc.contributor.author |
Benaissa, Zineb |
|
dc.contributor.author |
Lardjane, Rania |
|
dc.date.accessioned |
2023-10-05T10:39:10Z |
|
dc.date.available |
2023-10-05T10:39:10Z |
|
dc.date.issued |
2023 |
|
dc.identifier.uri |
https://di.univ-blida.dz/jspui/handle/123456789/25323 |
|
dc.description |
4.621.1.1222/p86 |
fr_FR |
dc.description.abstract |
Our project aims to implement a drowsiness detection system based on deep learning on
Raspberry Pi(Tensorflow). This combination offers a portable and energy-efficient solution for
accurate and real-time detection. The study examines the hardware and software aspects specific
to Raspberry Pi, as well as the system's performance compared to another drowsiness detection
method (Dlib). The goal is to enhance safety and vigilance in domains such as automotive
driving and surveillance. |
fr_FR |
dc.language.iso |
fr |
fr_FR |
dc.publisher |
blida 1 |
fr_FR |
dc.subject |
drowsiness, detection, tensorflow, raspberry pi, deep learning,dlib, driving. |
fr_FR |
dc.title |
Implémentation sur Raspberry pi de modèles de détection de la somnolence par deep learning |
fr_FR |
dc.type |
Other |
fr_FR |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée