Université Blida 1

Application du Deep Learning en vidéo surveillance

Afficher la notice abrégée

dc.contributor.author AIT ALI, YAHIA Rayane
dc.contributor.author MENNAA, Maroua
dc.date.accessioned 2023-10-05T11:01:53Z
dc.date.available 2023-10-05T11:01:53Z
dc.date.issued 2023
dc.identifier.uri https://di.univ-blida.dz/jspui/handle/123456789/25329
dc.description 4.621.1.1218 /p 91 fr_FR
dc.description.abstract The objective of this end-of-study project is to create a system capable of counting crowds and and verify the faces of suspect people present in real-time video surveillance using deep learning. This project is divided into two parts, in the first part the yolov3 model is used to detect and count people, and the second part, it uses the FaceNet model in order to detect the faces of suspect people and we also train it on images, assuming they are images of suspect people, we obtained satisfactory results and finally, we combine these two parts in the graphic interface. fr_FR
dc.language.iso fr fr_FR
dc.publisher blida 1 fr_FR
dc.subject deep learning, video surveillance, yolov3, face verification. fr_FR
dc.title Application du Deep Learning en vidéo surveillance fr_FR
dc.type Other fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte