Université Blida 1

Un modèle d’apprentissage en profondeur pour détecter L’hameçonnage des SMS (smishing)

Afficher la notice abrégée

dc.contributor.author Bousmaha, Ilhem
dc.date.accessioned 2023-10-05T12:55:30Z
dc.date.available 2023-10-05T12:55:30Z
dc.date.issued 2023
dc.identifier.uri https://di.univ-blida.dz/jspui/handle/123456789/25335
dc.description 4.621.1.1247 /p 92 fr_FR
dc.description.abstract Smishing, a form of social engineering attack involving fraudulent SMS messages, has become a major cybersecurity issue in mobile communications. In this study, we propose a new smishing detection method based on federated learning, a decentralized learning technique that preserves privacy. Using deep learning algorithms including LSTM, BiLSTM, CNN and MLP, we build a robust smishing detection model in a federated learning framework. Experiments show that the federated learning method using CNN achieves an accuracy of 92.38 %, demonstrating the efficacy of federated learning in solving the challenges of smishing detection while preserving data confidentiality. The proposed method offers a solution to smishing attacks, and paves the way for future research into privacy-preserving mobile security. fr_FR
dc.language.iso fr fr_FR
dc.publisher blida 1 fr_FR
dc.subject : Federated learning, Smishing, Mobile security, social engineering, Cyber security fr_FR
dc.title Un modèle d’apprentissage en profondeur pour détecter L’hameçonnage des SMS (smishing) fr_FR
dc.type Other fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte