Université Blida 1

Détection d'intrusions réseaux en utilisant le Machine Learning

Afficher la notice abrégée

dc.contributor.author LIZLI, RAFIK
dc.contributor.author KECIOUR, ANES
dc.date.accessioned 2023-10-08T12:43:07Z
dc.date.available 2023-10-08T12:43:07Z
dc.date.issued 2023
dc.identifier.uri https://di.univ-blida.dz/jspui/handle/123456789/25385
dc.description 4.621.1.1238 / p90 fr_FR
dc.description.abstract We are currently witnessing a constant increase in threats related to network intrusions. In this study, we focus on network intrusion detection using Machine Learning. Our objective is to explore different detection techniques by leveraging Machine Learning models. The results we obtain are carefully evaluated and compared to determine the most effective models. We highlight the importance of Machine Learning in intrusion detection, as it enables early and accurate detection of network intrusions. Additionally, we identify opportunities for future research to enhance intrusion prevention and response techniques, ultimately ensuring enhanced network security. In conclusion, XGBoost is recommended for network intrusion detection due to its high accuracy, ability to minimize classification errors, and good performance in terms of recall. fr_FR
dc.language.iso fr fr_FR
dc.publisher blida 1 fr_FR
dc.subject network intrusions, network intrusion detection, Machine Learning, Machine Learning models, security, XGboost fr_FR
dc.title Détection d'intrusions réseaux en utilisant le Machine Learning fr_FR
dc.type Other fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte