Université Blida 1

Authorship Attribution On Social Networks

Afficher la notice abrégée

dc.contributor.author Belabbes Nabi, Mina
dc.contributor.author Sahi, Serine
dc.contributor.author Boumahdi, Fatima ( Promotrice)
dc.contributor.author Remmide, Abdelkrim ( Encadreur)
dc.date.accessioned 2023-10-30T14:06:30Z
dc.date.available 2023-10-30T14:06:30Z
dc.date.issued 2023
dc.identifier.uri https://di.univ-blida.dz/jspui/handle/123456789/26043
dc.description ill., Bibliogr. Cote:ma-004-981 fr_FR
dc.description.abstract As social media platforms continue to grow in popularity and influence, the need to address problems related to content integrity and user accountability becomes more critical. Authorship attribution serves as a powerful tool in tackling such issues by accurately determining the real author of online posts. In this dissertation we propose an approach that utilizes deep learning models including Temporal Convolutional Networks (TCN) and Long Short-term Memory Networks (LSTM) combined with Convolutional neural networks (CNN) , along with machine learning models such as Autoencoder and Adaboost to effectively predict the authors of unknown online posts. To evaluate the effectiveness of our approach, we conducted experiments on various scenarios using a Twitter dataset, where we achieved an accuracy rate of 52.77% in authorship attribution. Keywords: NLP, Deep Learning, Authorship Attribution. fr_FR
dc.language.iso en fr_FR
dc.publisher Université Blida 1 fr_FR
dc.subject NLP fr_FR
dc.subject Deep Learning fr_FR
dc.subject Authorship Attribution fr_FR
dc.title Authorship Attribution On Social Networks fr_FR
dc.type Thesis fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte