Université Blida 1

Behavioral analysis of Active Directory logs

Afficher la notice abrégée

dc.contributor.author Aissani, Youcef
dc.contributor.author Neffah, Mohamed (Promoteur)
dc.date.accessioned 2023-11-05T13:45:32Z
dc.date.available 2023-11-05T13:45:32Z
dc.date.issued 2023
dc.identifier.uri https://di.univ-blida.dz/jspui/handle/123456789/26107
dc.description ill., Bibliogr. Cote:ma-004-988 fr_FR
dc.description.abstract This thesis focuses on the behavioral analysis of log data for anomaly detection and clustering in the field of cybersecurity. The objective is to obtain insights into patterns, anomalies, and potential threats present in sonatrach’s logs. Various algorithms, including K-means, DBSCAN, GMM, and Isolation Forest, were evaluated and compared in terms of their performance in detecting anomalies and clustering the data. The results showed that while K-means performed poorly, DBSCAN, GMM, and Isolation Forest exhibited different levels of sensitivity and performance. The findings provide valuable insights for improving anomaly detection and threat analysis in cybersecurity. Keywords : anomaly detection, behavioral analysis, clustering, preprocessing, machine learning. fr_FR
dc.language.iso en fr_FR
dc.publisher Université Blida 1 fr_FR
dc.subject anomaly detection fr_FR
dc.subject behavioral analysis, fr_FR
dc.subject clustering fr_FR
dc.subject preprocessing fr_FR
dc.subject machine learning fr_FR
dc.title Behavioral analysis of Active Directory logs fr_FR
dc.type Thesis fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte