Afficher la notice abrégée
| dc.contributor.author |
BENMALLEM Feriel |
|
| dc.date.accessioned |
2025-10-28T11:36:00Z |
|
| dc.date.available |
2025-10-28T11:36:00Z |
|
| dc.date.issued |
2025 |
|
| dc.identifier.uri |
https://di.univ-blida.dz/jspui/handle/123456789/40814 |
|
| dc.description |
4.621.1.1381;145p |
fr_FR |
| dc.description.abstract |
This thesis presents an embedded system for intelligent apricot ripeness detection using
YOLOv8 on Raspberry Pi 5, aiming to modernize fruit quality assessment in Algerian
agriculture. By creating and preprocessing a custom dataset, training and evaluating several
YOLOv8 models, and optimizing for real-time edge deployment, the system enables accurate,
fast, and objective classification of ripe and unripe apricots. The solution addresses challenges
of labor scarcity and post-harvest losses, offering farmers a practical tool for better harvest
timing and sustainable orchard management. This work demonstrates the potential of deep
learning and embedded AI to bring tangible benefits to precision agriculture. |
fr_FR |
| dc.language.iso |
en |
fr_FR |
| dc.publisher |
blida1 |
fr_FR |
| dc.subject |
Detecting apricot ripeness, YOLOv8, Raspberry Pi 5, Embedded AI, Precision Agriculture |
fr_FR |
| dc.title |
Intelligent Detection of Apricot Ripeness using YOLOv8: Embedded Application on Raspberry Pi 5 for Precision Agriculture |
fr_FR |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée