Université Blida 1

Intelligent Detection of Apricot Ripeness using YOLOv8: Embedded Application on Raspberry Pi 5 for Precision Agriculture

Afficher la notice abrégée

dc.contributor.author BENMALLEM Feriel
dc.date.accessioned 2025-10-28T11:36:00Z
dc.date.available 2025-10-28T11:36:00Z
dc.date.issued 2025
dc.identifier.uri https://di.univ-blida.dz/jspui/handle/123456789/40814
dc.description 4.621.1.1381;145p fr_FR
dc.description.abstract This thesis presents an embedded system for intelligent apricot ripeness detection using YOLOv8 on Raspberry Pi 5, aiming to modernize fruit quality assessment in Algerian agriculture. By creating and preprocessing a custom dataset, training and evaluating several YOLOv8 models, and optimizing for real-time edge deployment, the system enables accurate, fast, and objective classification of ripe and unripe apricots. The solution addresses challenges of labor scarcity and post-harvest losses, offering farmers a practical tool for better harvest timing and sustainable orchard management. This work demonstrates the potential of deep learning and embedded AI to bring tangible benefits to precision agriculture. fr_FR
dc.language.iso en fr_FR
dc.publisher blida1 fr_FR
dc.subject Detecting apricot ripeness, YOLOv8, Raspberry Pi 5, Embedded AI, Precision Agriculture fr_FR
dc.title Intelligent Detection of Apricot Ripeness using YOLOv8: Embedded Application on Raspberry Pi 5 for Precision Agriculture fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte